google33175f2e3129d8c7.html

Inconel 725

Alloy 725 is a Ni-Cr-Mo-Nb-Ti-A1 corrosion-resistant alloy that has both high corrosion resistance and age hardening to extremely high strength. The corrosion resistance of this alloy is basically the same as that of the widely used Inconel 625 alloy. The age hardening 7M alloy has twice the strength level of the 625 alloy and its plastic toughness remains at a high level. For applications in corrosive environments, both excellent corrosion resistance and high strength and high plastic toughness are required. Some large parts or parts with uneven cross-section dimensions cannot be cold-worked. This age-hardening nickel Base corrosion resistant alloy is the best choice. Alloy 725 has been successfully applied in the development of acid gas fields.

8. 3. 11. 1 Chemical composition and organization
The chemical composition of 00Cr20Ni60Mo8Nb3Ti(725) alloy is shown in Table 8-7. The Cr, Ni, Mo, Nb content of the alloy is basically the same as that of the 625 alloy. This is the fundamental reason why the corrosion resistance of this alloy is consistent with that of the 625 alloy. The difference between the two is that the carbon in the 725 alloy drops below 0.03% and is added. Ti and A1, the former reduces the carbide precipitation sensitivity and improves the resistance to intergranular corrosion, and the latter imparts the age strengthening function of the alloy.
00Cr20Ni60Mo8Nb3TiAl(725) alloy is a pure austenitic alloy in solution annealing state. Under the aging condition, carbide and intermetallic phase are formed. The carbide is mainly composed of M6C and MC carbide. The intermetallic phase of the alloy is [Ni3(Nb, Ti, Al)], the latter is the main age-strengthening phase of the alloy, and its function is to increase the strength of the alloy.
8. 3. 11.2 Mechanical properties of the alloy
The room temperature mechanical properties of 725 alloy are shown in Table 8-106. The high temperature transient mechanical properties of 5mm bar (solid solution + age hardening treatment) are listed in Table 8-107.

Table 8-106 Mechanical properties of room temperature 725 alloy

type

heat treatment

Rp1.0/MPa

Rp0.2/MPa

A/%

hardness/RC

KV/J

<f>l02 ~ 190mm

annealing

855

427

57

5

Bar horizontal

Age hardening

1241

917

30

36

92

<f>l3 – 190mm

Hot worked bar longitudinal

Age hardening

1241

903

31

36

132

tube

annealing

783

334

60

5

Age hardening

1268

921

27

39

Table 8-107 Average High Temperature Instantaneous Mechanical Properties of 16 ~ 16. 5mm Bars Annealed + Aging A

temperature

Rm/MPa

Rp0.2/MPa

A/%

Z/%

23

1254

892

32.0

48.4

38

1256

908

32.6

49.2

93

1230

868

29.6

47.0

149

1289

826

30.9

50.2

204

1170

824

36.7

52.4

260

1141

811

31.0

52.7

315

1099

782

32.4

54.2

343

1102

809

31. 1

53.5

371

1096

798

30. 8

53.4

399

1088

799

30.8

53.9

426

1106

816

29.6

49.6

454

1071

790

31.5

51.6

482

1075

807

30.7

49.7

510

1065

769

31.7

50. 1

538

1058

778

31.0

47.7

1 Solution treatment +732 °C x8h aging at 56$/»! Cool to 621 °C x8h air cooling.

8.3.11.3 Corrosion resistance A general corrosion
In the acid solution, the corrosion resistance of 725 alloys with different heat treatment conditions is listed in Table 8-108. In order to compare the 625 and C-276 alloys in the literature, it is obvious that the corrosion resistance of 725 alloy can be 625 with the annealed state. It is comparable to C-276 alloy.

Table 8-108 Average corrosion rate of Alloy 725 in acidic solution

alloy status

66°C 66℃ 66℃ boiling boiling

boiling

boiling

3% HCl 5%HCl 10%HCl 10%H2SO4 10%HNO3 30%H3PO4 80% H3 P04

725 alloy,Annealed state

<0.03 <0.03 2. 67 0.64 <0.03

0.08

1.86

725alloy,1038℃ Annealed s + 760℃ x6h, AC

<0.03 <0.03 6. 81 0.64 <0.03

0. 13

1.57

725alloy,1038℃Annealed state + 746℃  x8h, 56℃ /h  cooing to 620℃ x8h, AC

<0.03 <0.03 6. 35 0.64 <0.03

0. 08

1. 14

725alloy,1038℃ annealing +732*C x8h, 56℃ /h cooling to

620℃ x8h, AC

<0. 03 <0.03 5.54 0.71 <0.03

0.05

0. 89

625 alloy ①,annealing <0.03 1.75 2.36 0. 45 <0.03 <0. 25

0.63

C-276 alloy ①,annealing <0. 03 0. 13 -0.51 0.51 0.51 0.41 <0. 13 0. 13 -0.64

① is literature data

Table 8-109 shows the change in corrosion resistance of Alloy 725 in an acidic medium as a function of test time and medium temperature.

medium

temperature/℃

corrosion rate/mm • a-1

0~96h

96 ~192h

0- 192h

0.2% HCl

boiling

<0.01

<0.01

<0.01

1 % HCl

boiling

0. 12

0.05

0.26

90

0.64

0.05

0.05

5%HCl

70

4.92

5. 16

4.31

50

1.34

1.33

1. 14

30

6. 24

0. 17

0. 18

10%H,SO4

boiling

0. 25

0. 56

0. 12

60%I1,SO4

70

0.65

0. 65

0.41

50

0. 59

0.02

0.74

30

0.04

0. 03

0. 18

95%II2SO4

70

1.68

1.71

0. 58

50

1.84

1.27

0. 58

30

0. 28

0. 34

0. 33

85%H3PO4

boiling

0.78

0. 79

1.47

90

0.01

0.01

0.01

80%CH3COOH

boiling

<0.01

<0.01

<0.01

B stress corrosion
In the standard test for determining stress corrosion (hydrogen embrittlement) caused by sulfides (NACET M0177), the corrosion data of Alloy 725 is shown in Table 8-110. These data indicate that Alloy 725 is superior to Alloy 625 and Alloy 718.

alloy

material state

p0.2/MPa

硬度HRC

时间/天

硫化物应力破裂

725 alloy

cold work

621

25

30

aging hardening

811

37

30

aging hardening

887

40

30

aging hardening®

902

41.5

30

aging hardening

916

36

42

aging hardening

917

39

30

cold work+aging hardening

950

39

42

625 alloy

cold work

862

30.5

42

cold work

1103

37.5

10

cold work

1214

41

6

718 alloy

aging hardening

827

30

42

aging hardening

896

37

42

aging hardening

924

38.5

42

aging hardening

958

38

42

aging hardening

1076

41

60

cold work

1358

37.5

2

cold work®

1358

37.5

25

1 5% NaCl + 0.5% CH3COOH, H2S saturated, room temperature, 100% / ^. 2 stress applied, carbon steel coupling.
2 315t, 1000h
3 Test stress is 84% Rp0.2: 1138MPa

The stress corrosion behavior of Alloy 725 in simulated acid well environment is shown in Table 8-111 and Figure 8-93. The SCC resistance of 725 alloy is better than that of cold processed 625 alloy, G-3 alloy, 925 alloy, 825 alloy and 718 alloy. , near C-276 alloy.

Table 8-111 SCC of Alloy 725 in Simulated Acid Well Environment

alloy state

SCC

177℃. 191℃ 204℃ 216℃ 232℃ 246℃ 260℃
aging hardening

811

none none

none

none

none

see® none
725 aging hardening

887

none none

none

none see

aging hardening

916

none none    none none

none

none

none
aging hardening

917

none none    none none

none

see② none
cold work

993

none

SCC

cold work

1103

none

SCC

718 aging hardening

898

scc®

Note: C-ring sample, tested in autoclave, time 丨 4 days, stress = Rp0.2, medium: 25% NaCl + 0.5% CH3COOH + lg / L S + 827kPa H2S0
1 135 ° C;
2 There is one SCC in both samples.

C crevice corrosion resistance and corrosion fatigue
The crevice corrosion resistance of the aged 725 alloy is better than that of the annealed alloy 625 (Table 8-112), and the fatigue performance in seawater is consistent with that in air (Fig. 8-94).

able 8-112 Corrosion of 725 Alloy in Seawater 1

alloy

state

corrosion date/day

corrosion/%

corrosion depth/mm

725

aging hardening

——

0

0

625

annealing

2~5

25-75

0.26②

1 Tested in 303⁄4 flowing seawater for 30 days, a polypropylene plastic gasket was used to fix the gap on the alloy sheet sample.
2 The average value of the maximum depth of each gap, the maximum depth range is 0.02~0.66mm.

8.3.11.4 Heat treatment, thermoforming and welding properties
A heat treatment,
The strengthening of Alloy 725 is achieved by aging treatment phase precipitation, which should be combined with solution annealing before aging treatment. Solution annealing: 1040 ° C: solid solution, AC (air cooling). Aging treatment: For acid gas well applications, the following treatments are recommended, 730 ° C x 8 h, furnace cooling (56 / h) to 620 ° C x 8h, AC.

B Hot work

The suitable thermoforming temperature of B thermoformed 725 alloy is 899 -1121 °C: due to its high strength, thermoforming equipment should have sufficient deformation force. For the Ministry.The piece has uniform deformation and should be moderately reduced in the deformed low temperature zone (890~950 °C)The amount of compression. In order to avoid the mixed crystal structure, the alloy should be given a relatively uniform compression amount. For the open mold hot work, the final compression amount should be greater than 20%. For the closed mold hot work, the final deformation should be greater than 10%, and the air is cooled after hot work. In the hot work process, it is necessary to avoid overheating and avoid cold spots below 899 °C. Once surface cracks or other defects appear, they should be removed immediately. It is recommended to preheat the hot work tool and mold to 260 ° C, which is beneficial for eliminating surface cracks and defects on the part.
C welding
The most suitable welding method for Alloy 725 is GTAW and GMAW. SAW and SMAW are not recommended. The filling metal should be 725NDUR to ensure the strength of the weldment. Table 8-113 shows the slow tensile test data of 725NDUR wire surfacing 1 layer at 5% NaCl + 517kPa H2S + 2758kPa C02, 149 °C. The data in the table is the ratio of data obtained using the same slow tensile parameters in corrosive environments and air. Usually this ratio is acceptable above 0.90. Table 8-114 shows the room temperature mechanical properties of 725NDUR weld metal (GMA) and Table 8-115 for its impact properties.

Table 8-113 Slow stretching data ratio of 725 alloy surfacing layer

filling metal

Rupture time ratio(TTF)

Section shrinkage ratio

Elongation ratio

Secondary crack

725NDUR®

0. 98

1. 11

1.00

1.07

0. 97

1.11

625②

0.95

1.20

0. 95

0. 90

0.92

0. 90

1 surfacing on A1SI4140 steel, 663 ° C x 2h, AC.
2 Surfacing on AIS 丨 4130 steel, 635 ° C x 2h, AC.

Table 8-114 Mechanical properties at room temperature of 725NDUR weld metal (GMA)

materials treatment after welding Rm/MPa Rp0.2/MPa

A/%

Z/%

弯曲

transverse

annealing®

weld state

861

507

39.0

34.4

2T通过

longitudinal

weld state

826

524

33.0

30.6

2T通过

longitudinal

aging®

1187

897

20.0

22.5

2T通过

transverse

annealing®

aging®

1240

972

13.0

19.5

4T通过

longitudinal

annealing aging®

1199

896

19.0

28.6

4T通过

transverse

annealing aging® annealing aging®

1181

909

25.0

29.8

4T通过

longitudinal

annealing®aging③

1205

872

21.0

28.4

4T通过

transverse

annealing®

annealing®aging③

1191

873

28.0

42.7

4T通过

1 1038 ° C x lh, AC.
2 1066°Cxlh, AC0
3 732 ° C x 8h, cooled to 620 ° C x 8h with 56Vh, AC
Table 8-115 Impact properties of 725NDURGMA weld metal

heat treatment after welding

24*C, CVN Absorption work/J

-59℃, CVN Impact absorption work/J

welding state

89

732℃ x8h,56℃/h cooled to620℃ x8h,AC

22

24

1038℃ annealing+732℃ x8h,56℃  coolded to620℃ x8h,AC

57

53

1066℃ annealing+732℃ x8h,56℃/h cooled to 620℃ x8h, AC

76

107

The data in Tables 8-114 and 8-115 show that post-weld high-temperature annealing followed by double aging treatment can significantly improve the impact toughness.
8.3.11.5 Physical properties
The physical properties of Alloy 725 are shown in Table 8-116 to Table 8-118, respectively.

Table 8-116 Physical properties of Alloy 725

density /g . cm-3

8.31

Melting point range/℃

1271 -1343

Permeability(15.9kA/m)

1.001

GPa

204

GPa

78

Posangby(21℃)

0.31

Table 8-117 Linear Expansion Coefficient, Resistivity and Elastic Modulus of Alloy 725
temperature/℃ Linear expansion coefficient /xlO-6

Resistivity/ uΩ• m

Young’s mode/GPa

Shear die/GPa

Posangby
20 1. 144 204 78 0.31
100 13 1. 158 200 76 0.32
200 13. I 1. 170 194 74 0.31
300 13.4 1.206 188 71 0.32
400 13.7 1.226 182 69 0.32
500 14. 1 1.251 177 67 0. 32
600 14.4 1.265 169 63 0. 35
700 1.273 160 61 0.32
800 - 1.302 150 56 0. 33

Table 8-118 Thermal conductivity and specific heat capacity of Alloy 725

temperature/℃ Thermal conductivity/W • (m • K)-1  Specific heat capacity/J.kg.℃)-1  temperature/℃ Thermal conductivity/W • (m • K)-1  /J.kg.℃)-1 
23 10. 631 430 649 21.205 577
93 11.724 446 700 22.424 604
100 11.827 447 704 22. 453 604
149 12. 666 457 760 22. 807 607
200 13.544 468 800 23. 062 609
204 13.615 469 816 23. 179 610
260 14.491 481 871 23. 596 615
300 15. 122 489 900 23. 812 618
316 15. 390 492 927 24. 226 624
371 16. 346 503 982 25. 086 636
400 16. 843 508 1000 25. 361 639
427 17. 284 511 1038 25. 994 645
482 17. 920 517 1093 26. 925 653
500 18. 152 519 1100 27. 038 654
538 18. 864 531 1149 28. 292 663
593 19.912 550 1200 29. 604 673
600 20.037 552

Send your message to us:

  • captcha

Post time: Jun-26-2019